

Version No.: 8 Oct 12

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

Setup for GeneBLAzer[®] Assay on SpectraMax[®] M5/M5e Microplate Reader with SoftMax[®] Pro 6 Software

The Molecular Devices SpectraMax[®] M5/M5e Microplate Reader was tested for compatibility with Life Technologies GeneBLAzer[®] assays. The following document is intended to demonstrate setup of this instrument. These settings are also valid for the SpectraMax M3/M4, FlexStation[®] 3 Multi-Mode Microplate Reader and Gemini Fluorescence Microplate Reader with bottom-read fluorescence detection.

For more detailed information and technical support of Life Technologies assays, please call 1-800-955-6288 and enter extension 40266 or email <u>drugdiscoverytech@lifetech.com</u>.

For more detailed information and technical support of Molecular Devices instruments or software, please contact Molecular Devices at 1-800-635-5577 or <u>www.moleculardevices.com</u>.

Version No.: 8 Oct 12

Page 2 of 10

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

A. Recommended Optics

	Wavelength (nm)	Wavelength selection
Excitation	410/9	Monochromator
Emission 1	460/15	Monochromator
Emission 2	530/15	Monochromator
Emission 1 Cutoff	435	Filter
Emission 2 Cutoff	515	Filter

Version No.: 8 Oct 12

Page 3 of 10

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

B. Instrument Setup:

1. Open SoftMax[®] Pro 6 software. Click on "Protocol Manager" to open the Protocol Library. Within the "Reporter Assays" folder, locate the "GeneBLAzer" protocol and click to open.

2. Click on the microplate icon in the Navigation Tree on the left side of the screen. Click on the Settings icon either in the toolbar at the top of the screen...

... or in the plate section header.

Version No.: 8 Oct 12

Page 4 of 10

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

3. This opens the Settings window. Fluorescence read mode and Endpoint read type are already selected in the pre-configured protocol. Enter wavelength settings as shown below:

🤗 Settings					
Read Mode	ABS	FL FL	LUM	TRF	FP FP
Read Type	() Endpoint	Kinetic	Spectrum	Well Scan	
Category					
Wavelengths		Wavelength Se	ttings		
Plate Type Read Area			Number	of wavelength pairs	2
Shake			Excitation	Emission Cutoff	Emission
More Settings				Auto Cutoff	
		Lm1	410 nm	435 🗸	460 nm
		Lm2	410 nm	515 🗸	530 nm

4. Choose the desired plate type, using the upper dropdown menu to choose plate format (96 or 384 wells) and the "Select Specific" menu to choose the specific plate type.

Category			
Wavelengths	Plate Type Settings		
Plate Type			
Read Area	Plate Format	384 Wells 🗸	
PMT and Optics	Select Specific	384 Well Standard cirbtm	~
Shake		384 Well Standard opaque	
More Settings	Edit Plate	384 Well Greiner blk/clr	
-	Demove Plate	384 Well Greiner clear	
	Kentove Flate	384 Well Costar wht/clr	
		384 Well Costar blk/clr	2
		384 Well Costar black	
		384 Well Falcon blk/clr	
		384 Well Corning flatbtm	
		384 Well Corning clr/flatbtm	
		384 Well Corning low vol/rndbtm	

Version No.: 8 Oct 12

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

5. Now select the area of the plate to read.

Category	
Wavelengths	Read Area Settings
Plate Type	384 Well Costar blk/cir 🛛 🗹 Select All
Read Area	
PMT and Optics Shake More Settings	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 23 24 A O
	Word mornadori

Version No.: 8 Oct 12

Page 6 of 10

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

6. In the PMT and Optics category, the PMT Gain setting "Automatic" is recommended, as it enables the widest range of sample brightness to be detected in a single plate read without the need for manual PMT gain adjustment.

The number of Flashes per read may be adjusted. Fewer flashes enable faster plate reads, while more flashes enable higher performance.

Make sure the "Read from Bottom" box is checked.

Category		
Wavelengths	PMT and Optics Settings	
Plate Type		
Read Area	PMT Gain Automatic 💌	٢
PMT and Optics	Flashes per read 10	
Shake		
More Settings		
	Read From Bottom 🔽	

7. In the category "More Settings", the settings shown below should be used.

Category				
Wavelengths	More Settings			
Plate Type	C. C. Charles			
Read Area	Calibrate			
PMT and Optics	Carriage Speed	No	ormal	~
Shake	Read Order	Co	lumn	~
More Settings	Settling Time			
	Durat	ion	100	ms

8. To read the plate, click the green "Read" button at the top of the screen.

Version No.: 8 Oct 12

Page 7 of 10

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

9. After the plate is read, data will appear in the plate section:

Expt1				Pla	te1									Q	(Σ	Ξ	Ş				Q	4	٨
											_		_												
											Р	late:	L												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
А	52.4	48.1	47.7	83.5	83.7 67.6	84.7	774	745	732	758	753	703	519	273	219	206	244	65.3	82.4	82.8	47.6	47.3	47.4	46.5	
в	48.1	48.1	47.3	83.9	82.0	81.9	876	94.5 847	94.2 784	711	90.2 823	90.0 783	555	312	347	225	301	65.3	81.8	83.1	47.4	47.1	47.0	47.3	
5	7.76	7.69	7.75	67.4	68.5	67.9	108	98.5	95.2	95.2	94.0	99.1	112	133	132	136	157	12.5	66.5	66.3	7.81	7.74	7.65	7.71	
С	54.7 8.83	47.6 7.77	51.9 8.20	83.9 68.2	83.8 69.0	84.3 69.2	972 118	889 107	787 100	696 99.2	839 111	886 98.9	663 127	333 125	294 145	257 148	332 163	102 13.9	83.0 66.6	83.1 66.0	47.7 7.76	50.0 7.81	47.3 7.74	46.3 7.49	
D	55.5	53.1	47.8	82.7	83.3	84.3	10	871	965	968	10	898	682	380	337	274	315	65.6	82.7	82.4	47.7	47.5	47.7	47.5	
-	8.05	8.09	7.76	68.0 83.4	68.1 83.1	68.7 83.5	118	109 984	109	118	986	113	128	136	295	276	349	12.8 67.3	66.9 87.4	67.3 83.0	7.79 48 7	7.80	7.67 46 9	7.54	
E	7.87	7.85	7.93	67.7	67.8	68.6	121	110	117	116	113	107	132	141	146	151	175	12.8	66.5	67.3	7.83	7.77	7.70	7.78	
F	61.9	47.5	47.9	82.0	82.6	82.9	10	10	993	914	953	988	668	355	285	347	342	68.1	82.2	82.7	47.2	47.9	48.1	50.7	
	8.12	/./9	/./5	66.8 e4 0	6/.9 e7 7	6/.6 c2 7	126	11/	113	101	100	112	106	136	201	212	168	13.0	66.U	05.5	1.12	/.82	/.93	7.96	
G	7.53	7.75	7.96	66.8	67.4	67.3	129	113	122	114	118	111	132	148	144	150	176	12.7	66.7	65.4	7.46	7.62	7.55	7.61	
н	46.2	48.1	51.0	84.8	86.0	82.9	10	962	10	855	892	939	745	426	349	314	352	66.2	83.0	81.6	46.7	47.1	46.4	47.5	
	7.64 46.0	7.72	7.89 47.8	83.3	67.2 81.2	89.0	122	976	116	124	121	109	128	156	393	333	1/0	12./ 66.6	66.1 83.6	65.4 81.9	7.59 46.4	/.// 46.8	7.69 47 3	46.9	
I	7.57	8.19	7.86	66.8	67.4	67.0	125	110	113	110	103	111	133	146	173	168	187	12.7	66.9	65.4	7.53	7.73	7.50	7.60	
1	46.1	49.8	47.8	82.1	81.8	81.3	10	10	10	10	990	10	801	409	364	347	395	65.5	82.3	81.6	48.1	46.4	46.6	47.4	
1	7.33	8.09	7.90	67.1	67.1	66.7	123	118	122	116	104	110	136	147	159	168	171	12.7	65.9	65.4	7.66	7.59	7.70	7.43	
K	46.1 7.42	47.6 7.60	47.8 7.51	80.5 65.3	82.8 67.5	80.4 66.0	10	901 98.7	10	960 104	10	10 112	125	418 139	408 170	352 162	393 172	63.2 12.2	82.9 66.1	86.9	46.3 7.52	191 13.1	54.1 7.69	7.49	
	46.1	103	53.6	85.8	81.7	82.8	10	942	10	10	10	10	734	455	358	352	391	62.7	83.0	80.1	46.6	45.5	46.7	45.5	
L	7.65	9.05	8.15	66.4	66.8	66.3	120	110	121	119	113	114	127	156	156	165	175	12.2	66.7	64.4	7.50	7.44	7.55	7.34	
М	46.6 7.51	85.6 8.43	54.3 8.07	81.9 66.0	81.4 67.7	80.4 66.2	10 117	983 117	10 111	986 111	10 116	997 116	802 141	409 145	393 167	349 167	393 176	108 13.5	80.8 64.4	80.6 65.0	46.0 7.62	45.9 7.49	135 10.7	45.3 7.42	
N	46.5	46.8	57.4	81.8	82.0	81.1	10	983	10	10	10	997	828	467	408	374	412	63.7	81.6	80.8	46.9	45.6	46.8	45.7	
	7.33	92.6	8.44	67.2 81.2	67.5 82.6	82.5	124	105	120	115	110	111	134 820	15/	165 430	157 390	164 403	12.2 63.2	66.4 87.5	64.9 81.6	7.66 48.6	7.55 46.1	7.61 46.3	46.1	
0	8.69	9.80	7.62	66.8	68.8	67.6	133	124	122	128	129	123	138	183	193	189	207	12.3	67.2	65.2	7.95	7.47	7.38	7.39	
Р	46.1	50.9	46.9	82.5	83.0	86.3	11	10	10	11	10	11	806	457	384	365	395	63.6	83.0	82.2	47.3	46.1	61.2	46.8	
	7.61	7.91	7.71	67.7	67.6	67.5	127	120	110	125	103	114	147	144	156	164	175	12.7	66.8	65.3	7.71	7.71	8.08	7.74	

10. To set up the template for data analysis, click on Template Editor icon in the top toolbar...

... or on the plate section header.

Version No.: 8 Oct 12

Page 8 of 10

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

11. Select wells and choose the template group you want to assign them to; click Assign. Repeat for each sample type.

💷 Те	mnl	ate	Edit	or																						
Select	elect wells, then add or select a group (or blank) and assign.																									
						0			_								~	_			-	_			Groups	
	ору		Pas	te 1	<u></u>	l	Cl	ear							Vie	w	0	Samp	le N	ame	0	Des	cripto	or	Add Edit Delete	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
Α	Uns	tim	_																						■Custom	
В	01	01				-	-																		Unstimulated	
	01	01	-		-	-	-	-			-													-	Stimulated	
E	01	01			-	\vdash	-												_		-			Η.	Background	
F	01	01				1																				
G	01	01																								
н	01	01																								
1	01	01																								
1	01	01	_		-	-	-		-	-	-													-		
ĸ	01	01	-		-	-	-	-	-		-	-												-		
M	01	01			-	\vdash	-				-								_					Η.		
N	01	01				\vdash																				
0	01	01																								
Р	01	01																								
Assia	nmer	t Or	tion																							
Blan	ks —			-			Un	tim	later																	
	P	late	Blank				Sa	mple	01						*											
	<u> </u>																									
	G		01-																							
	G	roup	Blan	к			_			_			_													
								As	sign		Se	eries														
<u> </u>																										
	Print																								OK Can	cel

Template with wells assigned to different template groups:

🎟 Te	mpl	ate	Edit	tor																						X
Select	wells	s, the	en ac	dd or	sele	ct a g	grou	p (or	blan	ik) an	id as	sign.														?
																									Groups	
	ору		Pas	te 🔻			Cle	ear							Vie	w	0	Samp	ole N	ame	0	Des	ript	or	Add Edit Delete	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
А	Unst	im	01	02	03	04	05	06	07	08	09.5	tim	ilate	d 12	13	14	15	16	17	18	19	20	Bac	kgr	Custom	
В	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01	Unstimulated	
С	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01	Stimulated	
D	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01	Background	
E	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01	Dackground	
F	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
G	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
н	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
1	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
1	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
к	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
L	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
M	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
N	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
0	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		
Р	01	01	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	01	01		

Version No.: 8 Oct 12

Page 9 of 10

Setup Guide on the Molecular Devices SpectraMax® M5/M5e Microplate Reader

12. After wells are assigned to template groups, data will populate group tables where analysis can be done:

Navigation Tree	۰ 🔊	Do	ocument	Comparison		_		_	
Expt1 Expt1 Plate1 Unstimulat Stimulated			Expt1	🔛 Stimu	ılated			🚹 🍻	, 1 8
Background			Sample	Concentration nM	CV%465	CV%535	AvgRatio	SDratio	CVratio
			0	1 100000.000	8.6	6.5	8.81	0.345	3.9
			0	2 25000.000	9.4	7.4	9.12	0.433	4.7
			0	3 6250.000	11.7	8.2	9.14	0.513	5.6
			0	4 1562.500	14.0	8.4	8.81	0.997	11.3
			0	5 390.625	9.9	8.4	9.28	0.877	9.5
			0	6 97.656	10.3	6.2	9.07	0.630	7.0
			0	7 24.414	12.4	8.8	5.61	0.469	8.4
			0	8 6.104	16.1	10.2	2.49	0.284	11.4
			0	9 1.526	16.3	10.9	1.93	0.258	13.4
			1	0 0.381	17.1	8.3	1.69	0.277	16.4

Version No.: 8 Oct 12

Page 10 of 10

Setup Guide on the Molecular Devices SpectraMax $^{\otimes}$ M5/M5e Microplate Reader

C. Results

Concentration

Figure 1: GeneBLAzer® Assay. GeneBLAzer® assay performed using the Molecular Devices SpectraMax® M5 microplate reader and GeneBLAzer® MC3R CRE-*bla* CHO-K1 cell line stimulated with NDP- α -MSH. Z' = 0.74.